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Abstract 

The relationship between performance and filter count is examined for a 
synthetic discriminant function-based target-detection algorithm. 
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1. Introduction 

This report examines the relationship between the performance of the syn- 
thetic discriminant function (SDF) approach to automatic target recognition 
(ATR) and SDF filter count. The SDF approach to ATR is relatively mature, 
with much research published on various aspects of this concept appearing 
in the literature [l-7]. While a classification capability presently exists, I do 
not include it in this report. Consequently, this report is to be restricted to 
target detection only. 



2. Clustering 

To develop a set of SDF filters, one must have a reasonable method for or- 
ganizing target images (the basis for the filters) based on some measure of 
target image similarity. For present purposes, all images are masked scene 
size (128 x 128 pixels) representations with varying-sized centered targets. 
One obvious and reasonable basis for clustering images is the Euclidean 
distance between images in gray-scale pixel space. The images used to con- 
struct the filters can be represented by a set of reference vectors, one for 
each filter, that minimizes the following cost function: 

where x is an image vector, ci is a reference vector for cluster <i, and x E & 
if 

11 X - Ci 11 < II X - Cj 11,:; # i . (2) 

An obvious approach to a solution is the well-known k-means algorithm 
[8]. Traditional k-means suffers from problems addressed by a number of 
authors. The algorithm to be used in this report is the latest and probably 
the best iteration on this concept [9]. It is referred to as “optimal adaptive 
k-means.” In adaptive k-means, the k-means uses an iterative approach to 
finding a set of optimum reference vectors. An updated vector is computed 
as 

Ck.T+l = Ck.T + ~4J+T - Cm) ’ (3) 

where v is a constant governing the learning rate and Ark is defined as 

41, = 1 if 211;(]/ X - Cj,. II*) 5 q(ll X - Ci II*) i # k 1 (4) 

Ark = 0 otherwise. 

To obtain the within-region variation Q, one calculates 

%.7-+1 = Q?Jk.T + (1 - ct)(Alk 11 xy- - Ck.7’ II”) . (5) 

with d as a constant selected to be slightly less than 1. 

One potential problem suffered by all k-means algorithms is the inability to 
define initial reference vectors (with its potential consequence on finding 



a globally optimum solution). Rather than selecting initial reference vec- 
tors randomly, I used a recurrent neural network to perform this task. It 
has been shown that the Hopfield neural network [lo] can be used to solve 
various problems in optimization [U-14]. Its properties are detailed else- 
where [lo]. In the following, I briefly summarize its attributes. The asyn- 
chronously updated state of each neural network node is 

(6) 

where 

Vi = present state of node m, 

N = node count, 

W n,m = nodes n to m weights, and 

I = a hard thresholding function. If the following restrictions are 
imposed upon the weights, 

W nm = W,, and 

W mm. = 0, 

then an energy function can be associated with the network (assuming a 
zero externally applied threshold): 

E = -I,2 5 5 W,,V,V, . (7) 
n=l m=l 

An asynchronous network update guarantees an eventual settling into 
a final invariant state for all nodes-a state representing either a global 
or local energy minimum. Note from equations (6) and (7) that a two- 
population distribution will be selected that minimizes the absolute val- 
ues of the weights within each population and maximizes them between 
populations. The resultant vectors have just the attributes required for ini- 
tializing k-means. In this instance, the weights are equated with an average 
difference in gray-scale pixel values among the filter-generating images. 
The neural network divides the image population into two clusters. To in- 
crease the population cluster count, one determines the standard deviation 
of each cluster and subdivides the cluster with the largest deviation using, 
once more, the Hopfield neural network. In this way, the initial population 
can be divided into as many clusters as desired. 
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3. Results 

The purpose of this work is to explore the relationships among four signif- 
icant variables: (1) filter count, (2) false-alarm rate, (3) target-detection rate, 
and (4) SDF threshold. To test the performance of the SDF algorithm as a 
function of filter count, I modified the original code* to allow a filter count 
independent of the target count. I then ran the code with the chosen filter 
population and combined the results for each filter. The output from each 
filter was examined for peaks in the response as per standards built into the 
SDF code, and the magnitude and location of each peak were stored for a 
maximum of the 60 largest peaks. This meant that a maximum of 480 peak 
responses could be stored for the maximum tested filter count of eight for 
each analyzed scene. All peak responses for a given filter set were ordered 
by magnitude, and the resultant data set was scanned starting at the maxi- 
mum response. A circle of one of three chosen radii (3,5, and 10 pixels) was 
centered on the location of the given peak, and the peaks within the circle 
were combined two different ways. The first approach was to consider any 
peak falling within a given circle as coincident with the main peak of that 
circle with the consequence that all lesser peaks were eliminated from the 
peak list. 

The second approach was to define a location for the within-circle response 
by averaging the weighted locations of all peaks within the circle. The 
weighting factor was just the location peak response. Again, the ancillary 
within-circle peaks were eliminated from the peak response set. After com- 
paring both approaches, I found little difference in the final results. Thus, 
all subsequent results are to be given for the first (and simpler) approach. A 
target was considered detected if its location fell within a radius of the peak 
response location as defined previously. Similarly, when consolidating all 
background hits falling within the preceding defined circle into a conse- 
quent single hit, I assumed that all hits within the circle were detecting the 
same false background attribute. 

Figure 1 contains four examples of the target-containing scenes used to ex- 
amine filter performance. The images in these scenes were selected from the 
beginning, middle, and end of the test sequence and represent the whole 
data set. The crosshairs are centered on the targets. The images are in an 
as-given state, with no resealing or image renormalization. A narrow band 

‘The original version of the SDF code was written by Lipchen (Alex) Chan of ARL. 



Figure 1. Example scenes 
with targets indicated by 
crosshairs. 

of pixels appearing about the perimeter of some of the images has an in- 
tensity distribution unlike the rest of the scene. For this reason, I discarded 
all peak responses occurring within six pixels of the scene perimeter. All 
images are 128 x 128 pixels and the test sequence comprises 236 scenes, 
each containing two target images. Additional details about each of these 
two images and the images used to create the filter sets are given in the 
appendix. 

False alarm versus target-detection rates are given in figure 2. The graph 
legend identifies the number of filters for a target-detection rate radius (as 
previously noted) of 3,5, and 10 pixels. In general, the larger the filter count 
the poorer the performance. Figure 3 is the background and target perform- 
ance as a function of threshold. As can be seen, the relatively modest target- 
detection rate improvement with filter count increase is more than offset by 
the corresponding increase in false alarms. 

The SDF model has a number of desirable attributes: 

It readily adapts to a changing target environment. 

It appears to extract even low-quality images. 

Speed of execution appears to make the SDF model amenable to a 
real-time implementation. 
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Figure 2. Target-detection 
rate versus false alarms. 
Legends show filter counts 
of 1 to 4,6, and 8 and three 
circle radii (a) 3, (b) 5, and 
(c) 10 pixels. 

-10-21 -7, I I , I 
0 

J 
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

Targets 1 and 2 detection rate 

(b) 
/ / I 

* 

i 1 1 
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

Targets 1 and 2 detection rate 

(4 

i_- 1jl_,:l:.;~~_~~~_~~ 
6 

J+ C” 

4 
9 1 o-4 I 1 / I I 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 
Targets 1 and 2 detection rate 



Figure 3. Threshold versus 10 
false-alarm and 
target-detection rates. 
Legends show filter counts 8 
of 1,2,4, and 8 and circle 9 

radii of 3 and 5 pixels. 26 
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4. Conclusion 

A clustering algorithm was developed to optimally organize a set of cor- 
relation filter images for an SDF-based target-detection algorithm into one 
through eight populations. The resultant set of one through eight filters was 
tested (target-detection versus false-alarm rate) with the SDF algorithm. It 
was demonstrated that for the test population of target-containing scenes, 
the optimum SDF filter count is one. 
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Appendix. Attributes -Image Set and SDF Codes 

All filters were constructed from an image data set provided by the U.S. 
Army Aviation and Missile Command (AMCOM). This set contained 
716 images and comprises the following images: 11815041-rl.apc through 
11815226rl.apc and 11816053%~ through 11816288%s, where %s is one of 
the following: .m60, .tnk, _rl.m60, or xl.tnk. 

The SDF-based ATR algorithm was tested on the following set 
of 236 AMCOM-provided scenes: L1816S00053rl.bin through 
L1816S00288-ri.bin. Each scene contained two target images: the M60 
and tnk. 

The following is a flowchart of the codes used for this study, along with the 
files generated by each code. This chart is followed by a description of the 
contents of each output file. All source code is available upon request. 

0 filter_c1uster.c 
outputs: I 

1.: diagnostics 

2.: distancematrix 

3.: hopfield-clusters 

4.: vector%d.dat 

5.: matrix 

6.: merged-file 

l make-1ist.c 
outputs: I 

7.: detectlist%d --+ mv to: test.list 

l sdf.c + a.out -bd 1 
(change value NOBJECT to filter count) 

outputs: L 

8.: test.dfil 

l make_frame_list.c 
outputs: 1 

9.: test.list 
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l sdf.c - aout -td 1 
outputs: 1 

10.: detectiondat 

11.: images.dat 

12.: sdf_output.dat 

l sdf_imaging.c 
outputs: I 

13.: scene.dat + MATLABT”’ imagery 

l sdf-eva1uate.c 
outputs: 1 

14.: results.%d.%d.dat 

0 plotmaketc -+ MATLAB 2D curves 

Output file contents. 

diagnostics: Contains a description of the code performance at every 50 iterations 
for each cluster. This includes (1) (q..~ - ck,i)/cl;.i, where i refers to 
the initial value of the reference vector; (2) the filter image population 
count for each cluster; and (3) the within-region variation zrk. 

Contains the gray-scale distance matrix for the 716 filter images. 

Assigns each of the 716 filter images to its appropriate cluster for filter 
counts of 1 through n, with n nominally assigned the value 8. This is 
for the Hopfield clustering model. 

Contains the 128 x 128 final reference vectors for a cluster count de- 
fined by %d. 

distancematrix: 

hopfield_clusters: 

vector%d.dat: 

matrix: 

merged-file: 

detect-list: 

test.dfil: 

test.list: 

Is averaged distances between the Hopfield cluster populations for 
cluster count of 1 through, nominally, 8. 

For the 716 filter images, contains in column format the cluster mem- 
bership for a 1 through 8 cluster population, along with the image 
ID. 

Contains from merged-file the population for a selected cluster count 
along with the full paths to the individual images. 

Is the filter set generated by sdf.c to be used by the detection function 
of the aforementioned code. 

Contains table of image file names of scenes to be analyzed by the 
SDF code detector. 
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detection.dat: Contains the detector response map for a limited number of scenes 
along with the corresponding target locations. 

images.dat: Contains a limited number of the unprocessed scenes used as input 
to the detector. 

sdf_output.dat: Lists the locations of all targets on all scenes passed through the de- 
tector along with the top 60 peaks of the detector’s output for each 
filter. 

scene.dat: Contains a square array of image pixels composed of either (multi- 
ple) unprocessed scenes or the output of the detector with all targets 
indicated with crosshairs and in a MATLAB compatible format. 

results.%d.%d.dat: Is in a four-column format: first column are threshold values; second 
column, corresponding first target-detection rate; third column, the 
second target-detection rate, and-fourth column, the per scene back- 
ground hit count. The first %d is the filter count and the second %d is 
the aforementioned radius value. 
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